

Element Materials Technology 14805 Yorktown Plaza Dr. Houston, TX 77040 USA P 713 692-9151 F 713 696-6307 T 888 786 7555 info.houston@element.com element.com

Report No. 131195-01

Sulfide Stress Cracking Testing of TDZ Coating Systems P.O. No. 4512835952

Eva Coronado, Ph.D. Corrosion Laboratory Manager

December 15, 2020

It is our policy to retain components and sample remnants for a minimum of 30 days from the report date, after which time they may be discarded. The data herein represents only the item(s) tested. This report shall not be reproduced, except in full, without prior permission of Element Materials Technology.

EAR Controlled Data: This document contains technical data whose export and re-export/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval is required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

These commodities, Technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

This project shall be governed exclusively by the General Terms and Conditions of Sale and Performance of Testing Services by Element Materials Technology. In no event shall Element Materials Technology be liable for any consequential, special or indirect loss or any damages above the cost of the work.



### **INTRODUCTION**

This report presents the results of sulfide stress cracking (SSC) Method A test of TDZ coating systems that you requested, and which was performed by Element Materials Technology (Element). The testing was conducted on 4140 85K yield base metal. Element received 1" OD x 70" LG bar identified as MS-004643-03. Base material MTR documents were provided by the client and they are attached to this report as Appendix A. None of the test results in Appendix A were generated by Element. The coating systems are listed below:

| <u>Grade</u> | Coating System Details                             | Specimen ID           |
|--------------|----------------------------------------------------|-----------------------|
| 4140         | None                                               | 545, 552              |
| 4140         | A / 1.5-2 mil Total TDZ & 1 mil Armorplex / Blue   | 546 – 548 & 553 – 555 |
| 4140         | B / 1.5-2 mil Total TDZ & 1 mil Sealer Only / Grey | 549 – 551 & 556 – 558 |

Element was asked to perform SSC tests in accordance with NACE Standard TM0177 Method A using two different test environments. The details are listed below. Test temperature was 75°F, and test duration was 720 hours.

| <b>Environment</b> | Specimen ID | Test Solution | Initial pH | Test Gas                               | Applied Stress |
|--------------------|-------------|---------------|------------|----------------------------------------|----------------|
| 1                  | 545 – 551   | Solution A    | 2.6 - 2.8  | 100% H <sub>2</sub> S                  | 66% SMYS       |
| 2                  | 552 – 558   | Solution B    | 3.4 - 3.6  | 35% H <sub>2</sub> S / CO <sub>2</sub> | 66% SMYS       |

### SSC METHOD A TEST SPECIMENS

Fourteen (14) standard Method A test specimens were machined from the sample. The specimens were prepared using a low-stress grinder and an automatic longitudinal polisher for the gauge section preparation. A 1000 grit emery cloth was used as the final polishing step. Twelve (12) of the specimens were sent to Atomic Alloys, LLC for coating with two

Report No. 131195-01 December 15, 2020 Page 2 of 15



TDZ coating systems. A representative picture of uncoated and coated specimens is shown in Figures 1 through 3.



Figure 1: Uncoated test specimen before exposure.



Figure 2: Test specimen with Coating A (1.5-2 mil total TDZ & 1 mil Armorplex) before exposure.

ARMORGALV® ARMORPLEX BLUE™



Figure 3: Test specimen with Coating B (1.5-2 mil total TDZ & 1 mil Sealer only) before exposure.

ARMORGALV® - AG3000 -

After machining and/or coating, the specimens were degreased with alkaline detergent cleaner, followed by a two-step solvent rinse with ethanol and acetone, and warm-air dried. Adequacy of degreasing was determined in accordance with ASTM F 21.

Report No. 131195-01 December 15, 2020 Page 3 of 15



# LOAD APPLICATION

After degreasing, the specimens were sealed in the test cells. The specimens were stressed to 66 percent of the specified minimum yield strength (SMYS). The SMYS was 85 ksi.

The test cells were then deaerated with nitrogen for minimum 1 hour with a flow rate of 500 mL/min before introducing the test solution.

### **TEST CONDITION**

De-ionized water and reagent grade chemicals were used for the test solution preparation. The test solutions were then deaerated with nitrogen over the weekend with a flow rate of 500 mL/min. The deaerated solution was transferred into each cell, and they were further deaerated with nitrogen for one hour at a flow rate of 500 mL/min. After deaeration, the flow was switched to the test gas at a flow rate of 500 mL/min for one hour and then at a reduced maintenance flow rate for the remainder of the test period (720 hours). The test gas was 100% H<sub>2</sub>S (14.7 psi ppH<sub>2</sub>S) in the case of environment 1 and 35% H<sub>2</sub>S (5 psi ppH<sub>2</sub>S) with balance of CO<sub>2</sub> in the case of environment 2.

One specimen per coating system and environment was photographed at approximately 100-hour intervals. The pictures are shown in Figures 4 through 7.

Report No. 131195-01 December 15, 2020 Page 4 of 15



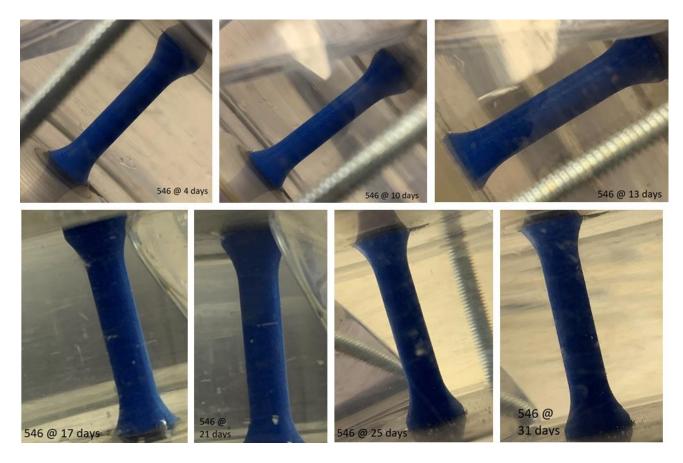



Figure 4: Test specimen 546 with Coating A (1.5-2 mil total TDZ & 1 mil Armorplex) at 100-hour exposure intervals in environment 1.

Report No. 131195-01 December 15, 2020 Page 5 of 15



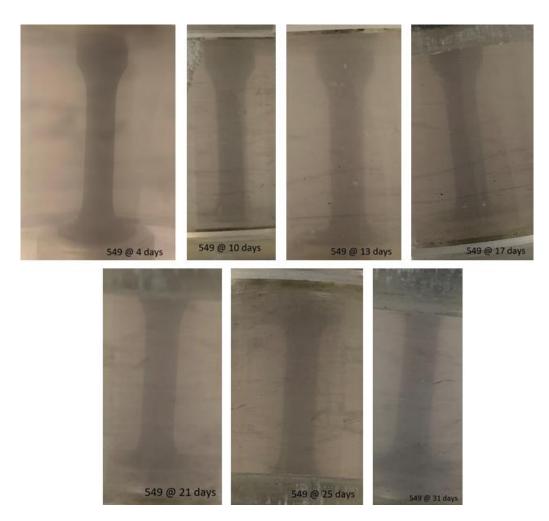



Figure 5: Test specimen 549 with Coating B (1.5-2 mil total TDZ & 1 mil Sealer only) at 100-hour exposure intervals in environment 1.

Report No. 131195-01 December 15, 2020 Page 6 of 15



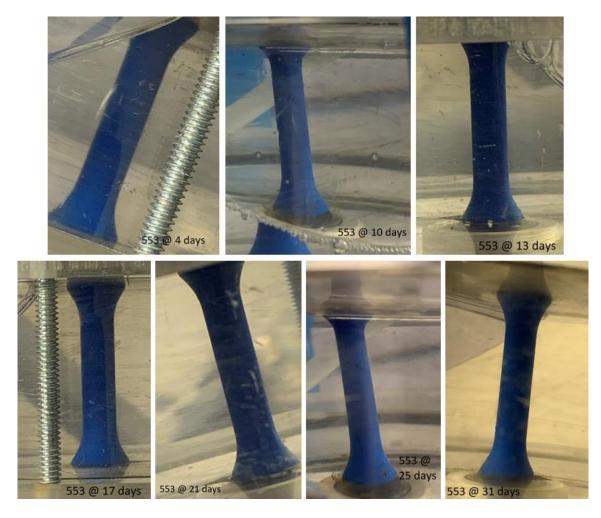



Figure 6: Test specimen 553 with Coating A (1.5-2 mil total TDZ & 1 mil Armorplex) at 100-hour exposure intervals in environment 2.

Report No. 131195-01 December 15, 2020 Page 7 of 15





Figure 7: Test specimen 556 with Coating B (1.5-2 mil total TDZ & 1 mil Sealer only) at 100-hour exposure intervals in environment 2.

# RESULTS AND CONCLUSIONS

At the end of the test, the final pH from each cell was measured and the H<sub>2</sub>S concentration of the last cell was measured. The cells were then purged with nitrogen at a flow rate of 500 mL/min for 30 minutes to remove the H<sub>2</sub>S. The initial pH, final pH and H<sub>2</sub>S concentration (cH<sub>2</sub>S) and test results are listed in Table 1 below. The specimens were then removed from the cells, cleaned and visually evaluated. Figures 8 and 9 show all specimens after the exposure. Figures 10 through 13 show representative detail of reduced section of one specimen per coating system and environment at 20X magnification.

Report No. 131195-01 December 15, 2020 Page 8 of 15



**Table 1: Test Results Details** 

| Environment | Specimen ID     | Initial pH | Final pH | Final cH <sub>2</sub> S (mg/L) | Result |
|-------------|-----------------|------------|----------|--------------------------------|--------|
|             | 545 (Uncoated)  | 2.6        | 3.2      |                                | Pass   |
|             | 546 (Coating A) | 2.6        | 2.6      |                                | Pass   |
|             | 547 (Coating A) | 2.6        | 2.6      |                                | Pass   |
| 1           | 548 (Coating A) | 2.6        | 2.7      | 2812*                          | Pass   |
|             | 549 (Coating B) | 2.6        | 2.7      |                                | Pass   |
|             | 550 (Coating B) | 2.6        | 3.0      |                                | Pass   |
|             | 551 (Coating B) | 2.6        | 2.9      |                                | Pass   |
|             | 552 (Uncoated)  | 3.4        | 3.5      |                                | Pass   |
|             | 553 (Coating A) | 3.4        | 3.4      |                                | Pass   |
|             | 554 (Coating A) | 3.4        | 3.4      |                                | Pass   |
| 2           | 555 (Coating A) | 3.4        | 3.4      | 1045**                         | Pass   |
|             | 556 (Coating B) | 3.4        | 3.4      |                                | Pass   |
|             | 557 (Coating B) | 3.4        | 3.4      |                                | Pass   |
|             | 558 (Coating B) | 3.4        | 3.4      |                                | Pass   |

Note: \* Minimum cH $_2$ S for environment 1 (100% H $_2$ S / 14.7 psi ppH $_2$ S) is 2300 mg/L.

All specimens passed the test.

Report No. 131195-01 December 15, 2020 Page 9 of 15

<sup>\*\*</sup> Minimum  $cH_2S$  for environment 2 (35%  $H_2S$  balance CO2 / 5 psi  $ppH_2S$ ) is 805 mg/L.





Figure 8: Test specimens after the 720-hour exposure in environment 1.

Report No. 131195-01 December 15, 2020 Page 10 of 15





Figure 9: Test specimens after the 720-hour exposure in environment 2.

Report No. 131195-01 December 15, 2020 Page 11 of 15



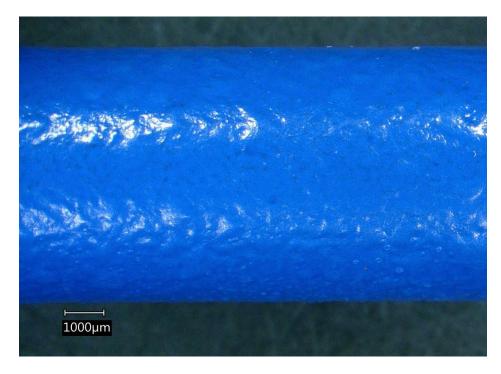



Figure 10: Test specimen 546 with Coating A (1.5-2 mil total TDZ & 1 mil Armorplex) after exposure in environment 1, at 20X magnification.

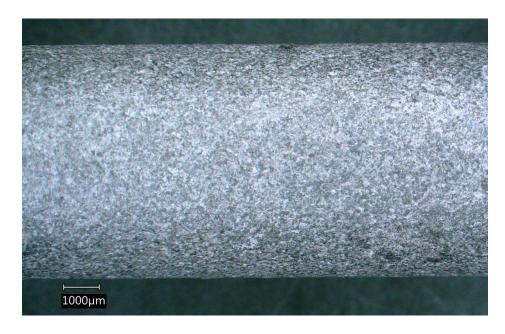



Figure 11: Test specimen 549 with Coating B (1.5-2 mil total TDZ & 1 mil Sealer only) after exposure in environment 1, at 20X magnification.

Report No. 131195-01 December 15, 2020 Page 12 of 15



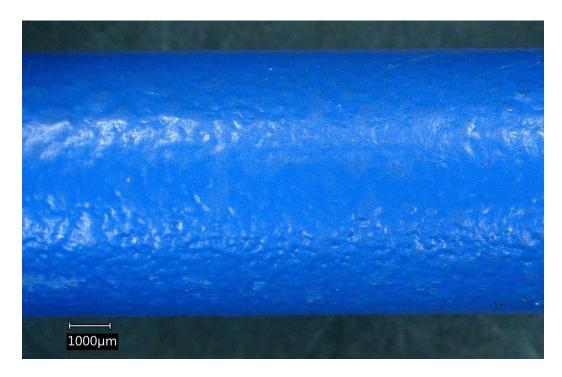



Figure 12: Test specimen 553 with Coating A (1.5-2 mil total TDZ & 1 mil Armorplex) after exposure in environment 2, at 20X magnification.



Figure 13: Test specimen 556 with Coating B (1.5-2 mil total TDZ & 1 mil Sealer only) after exposure in environment 2, at 20X magnification.

Report No. 131195-01 December 15, 2020 Page 13 of 15



Please call us if you have questions about this information or if we may serve you further.

Sincerely,

Eva Coronado, Ph.D.

Eva Coronedo

**Corrosion Laboratory Manager** 

Telephone : (713) 696-6384

E-mail : <a href="mailto:eva.coronado@element.com">eva.coronado@element.com</a>

Report No. 131195-01 December 15, 2020 Page 14 of 15



# Appendix A

Base material (1" OD x 70" LG bar identified as MS-004643-03) MTR documents. Note: None of the test results were generated by Element

Report No. 131195-01 December 15, 2020 Page 15 of 15

# TURN



# **TECH**

INCORPORATED

## CERTIFICATION PACKAGE FOR

PO#

# 45/27/09729-120

THIS CERTIFICATION PACKAGE INCLUDES THE FOLLOWING:

|    | ,,,,,  |             | TOTAL INOLUDES THE FOLLOWING.                     |
|----|--------|-------------|---------------------------------------------------|
|    | < 9 >  |             | CHEMICAL CERTIFICATION(S)                         |
|    | < 10 > |             | PHYSICAL CERTIFICATION(S)                         |
|    | < 11 > |             | HARDNESS CERTIFICATION-WITNESS                    |
|    | < 12 > |             | FURNACE CHART(S)                                  |
|    | < 13 > |             | STRESS RELIEVE CERTIFICATION                      |
|    | < 14 > |             | DESCRIPTIVE HEAT TREAT REPORT                     |
|    | < 15 > |             | CERTIFICATE OF COMPLIANCE                         |
|    | < 16 > |             | NITRIDE CERTIFICATION                             |
|    | < 17 > |             | WELD CERTIFICATION(S)                             |
|    | < 18 > |             | VISUAL EXAMINATION CERTIFICATION(S)               |
|    | < 19 > |             | VOLUMETRIC NDE (U/T) CERTIFICATION(S)             |
|    | < 20 > |             | SURFACE NDE CERTIFICATION(S) (M/P AND/OR L/P)     |
|    | < 21 > |             | SURFACE NDE PRIOR TO WELD CERTIFICATION(S)        |
|    | < 22 > |             | POSITIVE MATERIAL INSPECTION (P.M.I.)             |
|    | < 24 > |             | COATING CERTIFICATION(S)                          |
|    | < 25 > |             | PRE-MANUFACTURING MEETING                         |
|    | < 26 > | <del></del> | RADIOGRAPH CERTIFICATION(S)                       |
| _  | < 27 > | <del></del> | BOND INTEGRITY/FUSION LINE (U/T) CERTIFICATION(S) |
|    | < 28 > |             | OVERLAY THICKNESS (EDDY CURRENT)                  |
|    | < 29 > |             | THIRD PARTY INSPECTION WITNESS FORM(S)            |
|    | < 30 > |             | SET-OUT SHEET(S)                                  |
|    | < 31 > |             | PROPRIETARY THREAD CERTIFICATION(S)               |
| _  | < 32 > |             | STRESS/LOAD TEST CERTIFICATION(S)                 |
| -  | < 33 > |             | HYDRO-STATIC TEST CERTIFICATION(S)                |
| ٠_ | < 34 > | -           | RUBBER MOLD CERTIFICATION(S)                      |
| _  | < 53 > |             | PLATING CERTIFICATION                             |
|    |        |             |                                                   |

INSPECTED AND PACKAGED BY:

DATE:

08 | 21 | 20 ISO Certified

32007 Industrial Park Dr. Pinehurst, TX 77362

Phone: (281) 356-1290 E-mail: turn-tech@turn-tech.com



# **Certificate of Compliance**

Order

01875100

Customer

**TURN-TECH INC** 

**Customer PO** 

97438

Size

1.250 ROUND BAR

Grade

HF 4140 (217-237)

**Heat Number** 

H11805912WX

**Lot Number** 

481385

Specification

MS-4643-03 REV 02

**Customer PT#** 

LG MS-004643-03

Quantity

1 PC 0'-70.50", 1 PC 0'-74"

- 1) Sigma Tube & Bar LLC hereby certifies that the material described above and on the attached Test Report(s) complies with the terms of the order contract, as presently agreed upon.
- 2) This order was processed in accordance with Sigma Tube & Bar's Quality Manual Rev F, dated 22 February 2019.
- 3) No weld repair was performed on this material.

Cody Willeford Sales Assistant

VNDR: TURN-TECH

PO# 4512769729-120

P/N: 1" OD X 70" LG

QP# N/A

SIGN: Kristen Troquille

VNDR# 10006457

CC SER# 01

MS# HT#

4643-03 REV 02 H11805912WX-481385

CTNG:

N/A



#### JIANGYIN XING CHENG SPECIAL STEEL WORKS CO., LTD.

NO.297, BINJIANG (E) ROAD, JIANGYIN CITY, JIANGSU PROVINCE, CHINA PC:214429

### PRODUCER'S CERTIFICATE OF CHEMICAL AND PHYSICAL ANALYSIS

- EN10204 3.1

DESCRIPTION OF GOODS:HOT ROLLED AND FORGED ROUND STEEL BARS CONTRACT NO.:XBUSA18303HOU INVOICE NO.:XBUSA18303HOU-2C PO.212278
STEEL IS FREE FROM MERCURY; NO REPAIR WELDING; STEEL IS FREE FROM ANY HARMFUL RADIOACTIVE CONTAMINATION John Deere

|              |        |          | `         |                                                  |         |              |             |              |                     |               |        |       |          |          |                                                  |               | T -         |           | r -         |              | 05.41     |          |           |          | re Proces |          |        |          |                             |          |             |               |          |
|--------------|--------|----------|-----------|--------------------------------------------------|---------|--------------|-------------|--------------|---------------------|---------------|--------|-------|----------|----------|--------------------------------------------------|---------------|-------------|-----------|-------------|--------------|-----------|----------|-----------|----------|-----------|----------|--------|----------|-----------------------------|----------|-------------|---------------|----------|
| Gra          | le     |          | tch No.   | Heat                                             |         | Size(i       |             |              | e(inch)             | <u> </u>      | Bundle | :S    |          | eces     |                                                  | ht(MT)        |             | th (Feet) |             |              | n of Deli | very     |           |          |           | _        |        |          | n mercury a<br>contaminatio |          |             |               | e        |
| AISI41400    | (T P11 | M1       | 811670    | H118059                                          | 12WX    | 31.          | 75          |              | 1.25                | <u> </u>      | 3      |       |          | 90       | 7                                                | .92           | <u> </u>    | 22        |             | <u>`</u>     | Q+T       |          | E.        | AF+LF+\  | /D+OC+H   | IR.      |        |          | ontaminant                  | M OFF IN | etti repair |               |          |
|              | С      | Si       | Mn        | P                                                | S       | Cu           | Ni          | Cr           | v                   | N             | 40     | Al    | Ca       | H        | DI(")                                            | *0001         | T           |           |             |              |           |          |           |          |           |          |        |          |                             |          | 工           |               |          |
| MIN-         | 0.40   | 0.15     | 0.75      | 0.000                                            | 0.000   | 0.00         | 0.00        | 0.90         | 0.00                | 0.            | .15    | 0.020 | 0.0000   | 0.0000   | 5.5                                              | 0.000         |             |           |             |              |           |          |           |          |           |          |        |          |                             | ╙        | —           |               |          |
| MAX-         | 0.43   | 0.35     | 1.00      | 0.025                                            | 0.025   | 0.25         | 0.25        | 1.10         | 0.05                | 0.            | .25    | 0.050 | 0.0099   | 0.0003   | 99.0                                             | 0.040         |             |           |             |              |           |          |           |          |           |          |        |          |                             | Ь        |             |               |          |
| Ladle        | 0.41   | 0.26     | 0.94      | 0.017                                            | 0.004   | 0.12         | 0.17        | 1.05         | 0.01                | 0.            | .23    | 0.026 | 0.0006   | 0.0001   | 6.6                                              | 0.021         |             |           |             |              |           |          |           |          |           |          |        |          |                             | <u> </u> |             | 1             |          |
|              |        |          |           |                                                  |         | Non-Metal    | lic Inclu   | ei on        | <del></del>         |               |        |       |          |          | Macro                                            |               |             |           | <del></del> |              |           |          | Jominy T  | est (HRC | )         |          |        |          | This.                       | ension   | <u> </u>    | Visu          |          |
| l .          | A(T)   | A(H)     | B(T)      | B(H)                                             | C(T)    | C(H)         | D(T)        | D(H)         | Ds                  | T :           | s      |       |          | S        | R                                                | С             | Grai        | in Size   | I/          | 16"          | 1         | 2        | 3         | 4        | 5         | 6        | 7      | 8        | Dim                         | ension   |             | Visu          | aı       |
| Мах          | 2.5    | 2        | 2         | 1.5                                              | 2       | 1.5          | 2           | 1.5          |                     |               |        |       |          | 2        | 2                                                | 2             | min         | 5         |             | max          | 55 60     | 55 60    | 54 60     | 53 59    |           | 52 58    |        | 50 57    | i                           |          | - 1         |               | , ,      |
| actual       | 1.0    | 0.0      | 0.5       | 0.5                                              | 0.0     | 0.0          | 0.5         | 0.5          |                     |               |        |       |          | 1.0      | 1.0                                              | 1.0           | max         | 8         | act         | tual         | 58.5      | 58.5     | 57.5      | 57.5     | 57.5      | 57.5     |        | 57       | (                           | OK       | - 1         | OK            | ١ ١      |
| actu al      | 1.0    | 0.0      | 0.5       | 0.0                                              | 0.0     | 0.0          | 0.5         | 0.0          |                     |               |        |       |          | 1.0      | 1.0                                              | 1.0           | actual      | 6.5       |             |              | 9         | 10       | 11        | 12       | 13        | 14       | 15     | 16       |                             |          |             |               |          |
| actual       | 1.0    | 0.0      | 0.5       | 0.0                                              | 0.0     | 0.0          | 0.5         | 0.5          |                     |               |        |       |          |          |                                                  |               |             |           | min         | max          |           | 47 56    |           | 44 55    |           | 41 54    |        | 39 53    | 1                           | UT       | - 1         | Surfa         | ace      |
| actual       | 1.0    | 0.0      | 0.5       | 0.0                                              | 0.0     | 0.0          | 0.5         | 0.0          |                     |               |        |       |          |          |                                                  |               | Reduct      | ion Ratio | act         | tual         |           | 56       |           | 55       |           | 54       |        | 53       |                             |          | —           |               |          |
| actual       | 1.0    | 0.0      | 0.5       | 0.0                                              | 0.0     | 0.0          | 0.5         | 0.0          |                     |               |        |       |          |          |                                                  |               |             |           |             |              | 18        | 20       | 22        | 24       | 26        | 28       | 30     | 32       | l                           |          |             |               | ,        |
| actu al      | 1.0    | 0.0      | 0.5       | 0.0                                              | 0.0     | 0.0          | 0.5         | 0.0          |                     |               |        |       |          |          |                                                  |               | actual      | 128.8     | min         | max          |           | 36 51    |           | 34 48    |           | 34 46    |        | 33 44    | · '                         | OK       | - 1         | OK            | ۱ ا      |
| AVG          | 1.0    | 0.0      | 0.5       | 0.1                                              | 0.0     | 0.0          | 0.5         | 0.2          |                     |               |        |       |          |          |                                                  |               |             |           | act         | tual         |           | 50       |           | 46.5     | L         | 45       |        | 43       |                             |          | 止           |               |          |
|              | Non    | malizing |           | I                                                |         |              | Au          | stenitizin   | g                   | $\overline{}$ | Ouen   | ching | Temp o   | f Quench | Media(F)                                         |               | Tempenn     | g         | Coolin      | ng Meth      | od after  | Furnace  | Hearth Su | rvey &Ca | dibration | L        | Stress | Relievin | g                           | Furan    | се Туре     | Heat T        | reat Lot |
| Temp.(F)     | Tole   | rance    | Time(Min) | Cooling                                          | Media   | Temp.(F)     | Tole        | rance        | Time(               | (min)         | Me     | dia   | Starting | Fnis     | hing                                             | Temp.(I       | ) Tolerance | Time(min) | 1           | Cemperin     | ng        | Da       | ate       | Stan     | dard      | Temp.(F) | Tole   | rance    | Time(Min)                   | Cont     | inuous      | M18           | 11670    |
|              |        |          |           |                                                  |         | 1697         | -           | ±9           | 10                  | ,             | Wa     | ater  | 77       | 93       | 3.2                                              | 1112          | ±18         | 330       |             | Air          |           | 2017     | .9.17     | AMS      | -2750     |          |        |          |                             | J        |             |               |          |
| $\vdash$     |        |          |           |                                                  |         |              |             |              |                     |               |        |       |          |          |                                                  |               |             | 1         |             |              |           |          |           |          |           |          | -      |          |                             |          |             |               |          |
|              |        |          | Yield     |                                                  |         | . 144        | 1           | Propent      | ies (Long           | imainai)      | ,      | Yield |          |          |                                                  | · ·           |             | 1         |             |              |           |          |           |          | Hardn     | 1 ess    |        |          |                             |          |             |               | ,        |
| Specime      |        | 0.2%     |           | T                                                | Tensile | YS/TS        | Elong       | Reduct       |                     | _l ŀ          | 0.2%   | 0.5%  |          | Tensile  | YS/TS                                            | Hong          | Reduct of   |           | I           |              |           |          |           |          |           | Test     |        |          |                             | Test     | Г           | П             |          |
| n            |        | offset   | 0.5% EUL  | 0.60%                                            | 4D      |              | 2*          | of Area      | Specime<br>Location | 44            | offset | EUL   | ٥        | 4D       |                                                  | 2"            | Area        | Test      | 1           | BHN          | i :       | Test     |           | BHN      |           | Locatio  |        |          | 1                           | Locati   |             | 1 1           | . 1      |
| Location     |        | ksi      | ksi       | ksi                                              | ksi     |              | %           | %            |                     |               | ksi    | ksi   | ksi      | ksi      |                                                  | %             | %           | Location  |             | l            |           | Location |           |          |           | n        |        |          | 1                           | ∘n       |             | $\perp \perp$ |          |
|              | min    | 110      |           |                                                  | 140     |              | 15          | 45           |                     | min           |        |       |          |          |                                                  |               |             |           | min         | 285          |           | 1/2R     | min       | 269      |           |          | min    |          |                             |          | min         |               |          |
| Core         | max    | 140      |           |                                                  | 160     |              |             |              | 1                   | max           |        |       |          |          |                                                  |               |             | Surface   | max         | 341          |           | 1/ZK     | max       |          |           |          | max    |          |                             | L        | max         |               |          |
| actu         | _      | 135      |           | $\vdash$                                         | 148     | 0.912        | 20          | 56           | acti                | ıal           |        |       |          |          |                                                  |               |             | actu      | al          | 313          |           | act      | ual       | 311      |           | actu     | al     |          |                             | ac       | tual        |               |          |
| actu         | _      | 136      |           | $\vdash$                                         | 148     | 0.917        | 21          | 57           | actı                | ıai           | -      |       |          |          |                                                  |               | -           | actu      | ıal         | 311          |           | act      | ual       | 311      |           | actu     | ıal    |          |                             | ar       | tual        | ГТ            |          |
| actu         |        | -30      | <b></b>   | <b>—</b>                                         | 1.10    | \ <u>```</u> | <del></del> | <del>–</del> | actu                | _             | -      |       |          |          | <del> </del>                                     |               |             | actu      | al          |              | <b>—</b>  | act      | ual       |          |           | actu     | ıal    |          |                             | ar       | tual        |               |          |
| actu         |        | -        |           | <del>                                     </del> |         | $\vdash$     | $\vdash$    | $\vdash$     | acti                |               |        |       |          | H-       | <del>                                     </del> |               |             | actu      |             | <del> </del> | $\vdash$  | act      | ual       |          | <b></b>   | actu     | ıal    |          |                             | ar       | tual        | 一             |          |
| actu         | -      |          |           | <b>-</b>                                         |         |              | $\vdash$    | $\vdash$     | acti                |               |        |       | _        | <b>—</b> | <del> </del>                                     | <del>  </del> |             | actu      |             |              |           | act      |           |          |           | actu     |        |          | $\overline{}$               | ar       | tual        | $\vdash$      |          |
| acm          |        |          |           |                                                  |         |              | <u> </u>    | <u> </u>     |                     |               |        |       |          | <u> </u> | ├                                                | $\vdash$      |             | actu      |             |              | ┢         |          | ual       |          |           | actu     |        | <b>-</b> |                             |          | tual        | $\vdash$      |          |
|              |        |          |           |                                                  |         |              |             | 1            | actu                | ist           | 1      |       |          | 1        | ı                                                |               |             | actu      | cu          |              | 1         | i acc    |           |          | 1         |          |        |          |                             |          |             |               |          |
| actu         | -      |          |           |                                                  |         |              |             |              |                     | -             | _      |       |          |          |                                                  |               |             |           | -           | 1            |           |          |           |          |           |          | 1      |          |                             | 1        | 1           |               |          |
| actu<br>actu | -      |          |           |                                                  |         |              |             |              | acti                | ıal           |        |       |          |          |                                                  |               |             | actu      | ıal         |              |           | act      | wal       |          |           | actu     | ıal    |          |                             | au       | tual        |               |          |

VNDR: TURN-TECH

VNDR# 10006457

PO# 4512769729-120 P/N: 1" OD X 70" LG

CC SER# 01

QP# N/A

MS# 4643-03 REV 02

H11805912WX-481385 HT#

SIGN: Kristen Troquille

CTNG: N/A

1/38

TURN-TECH INC PO: 97438, PT# LG MS-004643-03, SP# MS-4643-03 REV 02 SO:01875100 pg 2 of 4 approved by CW 08/04/2020



#### JIANGYIN XING CHENG SPECIAL STEEL WORKS CO., LTD.

NO.297, BINJIANG (E) ROAD, JIANGYIN CITY, JIANGSU PROVINCE, CHINA PC:214429

#### PRODUCER'S CERTIFICATE OF CHEMICAL AND PHYSICAL ANALYSIS

-- EN10204 3.1

DESCRIPTION OF GOODS:HOT ROLLED AND FORGED ROUND STEEL BARS
CONTRACT NO::XBUSA18303HOU INVOICE NO::XBUSA18303HOU-2C PO:212278 STEEL IS FREE FROM MERCURY; NO REPAIR WELDING; STEEL IS FREE FROM ANY HARMFUL RADIOACTIVE CONTAMINATION John Deere

| Gra           | ide   | В      | atch No.   | Hea               | t No.  | Size(         | (mm)              | Size   | (inch)     | Bundles        | Pi     | ieces         | Weig              | ht(MT)     | Leng     | th(Feet)  | Condition  | n of Deli        | very . |               | Manufach          | re Proces | S             | Free from      | n mercury a | nd any harmful r | adioactive     |
|---------------|-------|--------|------------|-------------------|--------|---------------|-------------------|--------|------------|----------------|--------|---------------|-------------------|------------|----------|-----------|------------|------------------|--------|---------------|-------------------|-----------|---------------|----------------|-------------|------------------|----------------|
| AISI4140      | QT P1 | M      | 1811670    | H11805            | 912WX  | 31.           | .75               | 1      | 1.25       | 3              |        | 190           | 7                 | .92        |          | 22        | . (        | Q+T              |        | E             | AF+LF+V           | /D+CC+I   | IR.           | ,              | ontaminati  | on;NO weld repa  | dr.            |
|               |       |        |            |                   |        |               |                   |        |            |                |        | Energ         | y Charpy          | Impact Tes | t (10×10 | ×55mm V N | lotch)     |                  |        |               |                   |           |               |                |             |                  |                |
| Specime       |       |        | Long.      |                   |        | Long.         |                   |        | Long.      |                |        | Long.         |                   | Soccime    |          |           |            |                  |        |               |                   |           |               |                |             |                  |                |
| n<br>Location |       | 77 F   | Shear Zone | Lateral<br>Expans |        | Shear<br>Zone | Lateral<br>Expans |        | Shear Zone | Lateral Expans | -20 F  | Shear<br>Zone | Lateral<br>Expans |            |          |           | Shear Zone | Lateral<br>Expan |        | Shear<br>Zone | Lateral<br>Expans |           | Shear<br>Zone | Lateral Expans |             | Shear Zone       | Lateral Expans |
|               |       | ft-Ibs | %          | mm                | ft-Ibs | ₹             | mm                | ft-Ibs | %          | mm             | ft-Ibs | %             | mm                | Localion   | l :      | ft-Ibs    | %          | mm               | ft-Ibs | %             | mm                | ft-Ibs    | %             | mm -           | ft-Ibs      | %                | mm             |
| Core          | min   | 40     |            | 1                 | 30     |               |                   | 1      |            |                | 20     |               |                   |            | min      |           |            |                  |        |               |                   |           |               |                |             |                  |                |
| Core          | max   |        |            |                   |        |               |                   |        |            |                | 737    |               |                   | 1          | max      |           |            |                  |        |               |                   |           |               |                |             |                  |                |
| actu          | ıal   | 77     | 0.74       | 75                | 69     | 0.68          | 65                | 69     | 0.71       | 70             | 59     | 0.66          | 65                | ac         | tual     |           |            |                  |        |               |                   |           |               |                |             |                  |                |
| actu          | al    | 74     | 0.76       | 70                | 68     | 0.70          | 70                | 70     | 0.69       | 70             | 65     | 0.63          | 60                | ac         | tual     |           |            |                  |        |               |                   |           |               |                |             |                  |                |
| actu          | ıal   | 76     | 0.75       | 75                | 68     | 0.71          | 75                | 68     | 0.65       | 65             | 61     | 0.62          | 60                | ac         | tual     |           |            |                  |        |               |                   |           |               |                |             |                  |                |
| actu          | ıal   |        |            |                   |        |               |                   |        | *          |                |        |               |                   | ac         | ual      |           |            |                  |        |               |                   |           |               |                |             |                  |                |
| actu          | ıai   |        |            |                   |        |               |                   |        |            |                |        |               |                   | ac         | tual     |           |            |                  |        |               |                   |           |               |                |             |                  |                |
| actu          | ıal   |        |            |                   |        |               |                   |        |            |                |        |               |                   | ac         | tual     |           |            |                  |        |               |                   |           |               |                |             | T                |                |
|               |       | _      |            |                   | _      |               |                   |        |            |                | 1      |               |                   | _          |          | 1         |            | 1                |        | <del> </del>  |                   |           |               |                |             | <del></del>      |                |

| 37     | Actor ASTM A29-16,A322-13,A304-16,A751-14a,ASTM E381-17,E112-13,E81-6a,E10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15,EE10-15, |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remark |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

QUALITY MANGER:Bai Yun



VNDR: TURN-TECH

VNDR# 10006457

PO# 4512769729-120

CC SER# 01

P/N: 1" OD X 70" LG

MS#

4643-03 REV 02

QP# N/A

HT#

H11805912WX-481385

SIGN: Kristen Troquille

CTNG: N/A

# SPECIALTY HEAT TREAT, INC.

#### CERTIFICATE OF HEAT TREATMENT

CUST NO:

S196

SIGMA TUBE & BAR LLC

CUST PH:

281-369-5525

CUST NAME:

14315 W. HARDY RD.

CUST PO:

\$ 01875100 01 SR

CUST ADDR:

HOUSTON, TX 77060

CUST HN:

4140

7-29-20

H11805912WX

QUANTITY:

3

MATL:

DUE DATE:

WGT:

52

LOCATION: DATE RECD: NS-2 7-22-20

STICKER #:

99568

DESC:

LT# M1811670

1 1/4"OD X 1 @ 70 1/2"LG; 1 @ 80"LG; 1 TP @ 7"LG

PROCESS INSTRUCTIONS: HEAT TREAT PER MS-004643-03 REV 02

PROCESSED AS FOLLOWS IN A BATCH FURNACE:

MCS:

1 1/4"

CONTROLLED BY FURNACE INSTRUMENT

| PROCESS      | TIME    | TEMP IN DEG F | COOLING METHOD                  |
|--------------|---------|---------------|---------------------------------|
| HARDEN       | 3 HOURS | 1575          | QUENCHED TO QUENCH TEMPERATURES |
| OIL QUENCHED |         | 106-114       |                                 |
| TEMPER       | 4 HOURS | 1290          | A/C TO AMBIENT                  |

HARDNESS:

CK 6" PROLONGATION (2 PLCS) = 237-237 HBW; CK TP = 237-237 HBW

CK 1 PC(s) = 228 HBW/P

MECHANICAL PROPERTIES OF A 0.503" DIA TP PER ACCU-TEST LAB #: 936235.00

CORE

| TENSILE     | YIELD .2% OFF | ELONG IN 2" | REDUCTION |
|-------------|---------------|-------------|-----------|
| 111,200 PSI | 96,400 PSI    | 25.4 %      | 63.2 %    |

**CHARPY IMPACTS** 10X10 MM CORE

| DIRECTION    | TEMPERATURE | FT/LBS    | MILS LAT EXP | %SHEAR-%D/F |
|--------------|-------------|-----------|--------------|-------------|
| LONGITUDINAL | -20 °F      | 97-102-94 | 70-73-68     | 100-100-100 |

HT LOT#

481385

ALL MATERIALS ON THIS ORDER WERE PROCESSED IN ACCORDANCE WITH OUR QUALITY MANUAL SHT 01.2 REV 2

SPECIALTY HEAT TREAT, INC.

VNDR: TURN-TECH PO# 4512769729-120

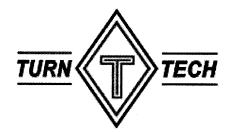
P/N: 1" OD X 70" LG

QP# N/A

SIGN: Kristen Troquille

VNDR# 10006457

CC SER# 01


MS#

4643-03 REV 02

HT#

H11805912WX-481385

CTNG:



# TURN-TECH, INC.

#### 32007 INDUSTRIAL PARK DRIVE

PINEHURST, TEXAS 77362

# **Certificate of Conformance**

From: Turn-Tech, Inc

Packing List No: 64189

Today's Date: 08/21/20

Shipping Date: 08/21/20

PO Number: 4512769729

Item #: 120

Part Number: 1" OD X 70" LG MS-004643-03

Material Specification: MS-4643-03 REV 02

Quality Plan: None Coating Certification: None

Quantity

**Shipped** <u>Unit</u> **Description**  Job Number

1 EΑ 1" OD X 70" LG MS-004643-03 1" OD X 70" LG MS-004643-03

79077

VNDR: TURN-TECH

10006457 VNDR#

PO# 4512769729-120

CC SER# 01

P/N: 1" OD X 70" LG

4643-03 REV 02 MS# H11805912WX-481385

HT#

QP# N/A

SIGN: Kristen Proquille

N/A CTNG:

We hereby certify that the above mentioned parts meet the requirements of all drawings and specifications listed on the above purchase order, including material, heat treatment, plating and special procedures as applicable.

Clete Jacger

**Authorized Signature** Turn-Tech, Inc



## Turn-Tech, Inc

### 32007 INDUSTRIAL PARK DRIVE PINEHURST, TX 77362

Phone: 281-356-1290 Fax: 281-356-1293

#### Visual Examination Certification

From: Turn-Tech, Inc

32007 INDUSTRIAL PARK DRIVE

PINEHURST, TX 77362

Report Date: 08/20/20

PO Number: 4512769729

Item #: 120

Part Number: 1" OD X 70" LG MS-004643-03

**Drawing No: None** 

Weld Specification: None

Heat No: H11805912WX-481385

Material Specification: MS-4643-03 REV 02

Procedure: X-008060 REV 06

Quality Specification: None

Coating Specification: None

Quantity

**Description** 

Job Number

1 Pcs.

1" OD X 70" LG MS-004643-03 1" OD X 70" LG MS-004643-03

79077

#### Area(s) Examined:

THIS IS A VISUAL EXAMINATION AFTER FINAL MACHINING FOR SN# 01.

VNDR: TURN-TECH

PO# 4512769729-120

VNDR# 10006457

CC SER# 01

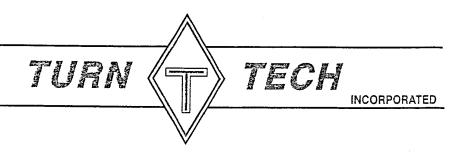
P/N: 1" OD X 70" LG

QP# N/A

MS#

4643-03 REV 02 HT# H11805912WX-481385

SIGN: Kristen Troquille


CTNG:

N/A

1 Pcs. Examined

1 Pcs. Accepted

Inspected By:



# QUALIFIED INSPECTION METHOD VISUAL EXAMINATION PERSONNEL

## ALL TESTING DONE IN ACCORDANCE WITH CAMERON X-008060 REV 06

| ID NUMBER     | NAME             | QUALIFIED THRU DATES LISTED |
|---------------|------------------|-----------------------------|
| <t>2</t>      | LORENZO NUNEZ    | 11/19-11/20                 |
| <t>7</t>      | SONNY SEBASTIAN  | 11/19-11/20                 |
| <t>9</t>      | JORGE GARCIA     | 11/19-11/20                 |
| <t>12</t>     | FERNANDO SANCHEZ | 11/19-11/20                 |
| <t>14</t>     | ROBERTO ESPINOZA | 11/19-11/20                 |
| EMP# 345      | CLETE JAEGER     | 11/19-11/20                 |
| <t>10</t>     | JUAN LONGORIA    | 11/19-11/20                 |
| <t>15</t>     | LUIS MATA        | 03/20-03/21                 |
| <t>17</t>     | EDUARDO PENAFIEL | 11/19-11/20                 |
| EMP# 573      | BLAKE URBANOSKY  | 12/19-12/20                 |
| CERTIFIED BY: |                  | DATE                        |
| JORGE GARCIA  | Jorge García     | Mar 2020                    |

Q.A. MANAGER

VNDR: TURN-TECH PO# 4512769729-120

P/N: 1" OD X 70" LG

QP# N/A

SIGN: Kristen Troquille

VNDR# 10006457

CC SER# 01

MS# 4643-03 REV 02

H11805912WX-481385 HT#

CTNG: N/A

ISO Certified

32007 Industrial Park Dr. Pinehurst, TX 77362

Phone: (281) 356-1290 E-mail: turn-tech@turn-tech.com

# Hardness Value Report Job# 79077 Turn-Tech, Inc.

|           | L                           |
|-----------|-----------------------------|
| PART #:   | 1" OD X 70" LG MS-004643-03 |
| MACH DET: | None                        |
| PROC:     | X-008065 REV 09             |

HARDNESS VALUE

| ,         | SHEETOF                     |
|-----------|-----------------------------|
| QUANTITY: | 1                           |
| MS #:     | MS-4643-03 REV 02           |
| HEAT #:   | H11805912WX-481385          |
| QP #:     | None                        |
| DESC:     | 1" OD X 70" LG MS-004643-03 |
| HARDNESS  | PERFORMED PER BOM & DWG     |

217-237 HB MATERIAL HARDNESS RANGE: 4BW 710F 7-14 TESTING TYPE (A, B, OR C: AMBIENT TEMPERATURE:

EMPLOYEE #:

| 1) 229 | 11) | 21) | 31) | 41) | 51) | 61) | 71)   | 81) | 91)  |
|--------|-----|-----|-----|-----|-----|-----|-------|-----|------|
| 2)     | 12) | 22) | 32) | 42) | 52) | 62) | 72) . | 82) | 92)  |
| 3)     | 13) | 23) | 33) | 43) | 53) | 63) | 73)   | 83) | 93)  |
| .4)    | 14) | 24) | 34) | 44) | 54) | 64) | 74)   | 84) | 94)  |
| 5)     | 15) | 25) | 35) | 45) | 55) | 65) | 75)   | 85) | 95)  |
| 6)     | 16) | 26) | 36) | 46) | 56) | 66) | 76)   | 86) | 96)  |
| 7)     | 17) | 27) | 37) | 47) | 57) | 67) | 77)   | 87) | 97)  |
| 8)     | 18) | 28) | 38) | 48) | 58) | 68) | 78)   | 88) | 98)  |
| 9)     | 19) | 29) | 39) | 49) | 59) | 69) | 79)   | 89) | 99)  |
| 10)    | 20) | 30) | 40) | 50) | 60) | 70) | 80)   | 90) | 100) |

NOTES:

SERIAL#

**REVIEWED BY:** 

8,6,20

VNDR: TURN-TECH PO# 4512769729-120 P/N: 1" OD X 70" LG

4643-03 REV 02 H11805912WX-481385 N/A

SIGN: Kristen Troquille

| ΤL | JRN | N-T | EC | Η. | INC | <b>.</b> |
|----|-----|-----|----|----|-----|----------|
|    |     |     |    | ,  |     | •        |

### **CONTROL CHART**

JOB#

79077

|              | - T                           |             |           | PART#:    |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | MS #:      | MS-4643-03 REV 02  |          |
|--------------|-------------------------------|-------------|-----------|-----------|------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|--------------------|----------|
| CUST #:      | A916<br>4512769729 ITEM#: 120 |             |           |           | MACH. DET.: None                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | HEAT #:    | H11805912WX-481385 |          |
| PO# - ITEM#: |                               |             |           |           | DESC.: 1" OD X 70" LG MS-004643-03 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | COATING:   | None               |          |
| QUANTITY:    | 1                             |             |           | QP#:      | None                               | None      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | WELDING:   | None               |          |
|              | . Е                           | EMPLOYEE #: | 537       |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                    |          |
| SN           |                               | SER #:      |           |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                    |          |
| PRINT DIM.   | TOLERANCE                     |             | PART DIM. | PART DIM. | PART DIM.                          | PART DIM. | PART DIM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PART DIM. | PART DIM.  | PART DIM.          | PART DIM |
| 1.000        | +.005                         |             | 1.004     |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                    |          |
| 70.00        | 45                            |             | 70.500    |           |                                    |           | 10 to |           |            |                    |          |
|              |                               |             |           |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                    |          |
|              |                               |             |           |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                    |          |
|              |                               |             |           |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                    |          |
|              |                               |             |           |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | ,          |                    |          |
|              |                               |             |           |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                    |          |
|              |                               |             |           |           | -                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | <b>/</b> - |                    |          |
|              |                               |             |           |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                    |          |
|              |                               |             |           |           |                                    | ,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                    |          |
| GAGE#        |                               | )           |           |           |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | ,          | ,                  |          |
| INSPECTOR:   | for                           | × 2.        | " Fire    | au_       | DATE: 8                            | 120 120   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | SHEET _    |                    |          |

VNDR: TURN-TECH PO# 4512769729-120

P/N: 1" OD X 70" LG

QP# N/A

SIGN: Kristen Troquille

VNDR# 10006457

CC SER# 01

MS# 4643-03 REV 02

HT# H11805912WX-481385

CTNG: N/A